03.com.ua- свободная медицинская энциклопедия. Каждый зарегистрированый участник может редактировать статьи

ПЗС-матрица

Материал из 03.com.ua.
Версия от 19:36, 28 октября 2007; Root (обсуждение | вклад) (1 версий)
Перейти к навигации Перейти к поиску

Шаблон:Викифицировать

Шаблон:Портал CCD-ма́трица (сокр. от Шаблон:Lang-en, «Charge-Coupled Device») или ПЗС-ма́трица — специализированная аналоговая интегральная микросхема, состоящая из светочувствительных фотодиодов, выполненная на основе кремния, и на базе ПЗС — приборов с зарядовой связью. CCD-матрицы выпускаются и активно используются компаниями Nikon, Canon, Sony, Fuji, Kodak, Matsushita, Philips и многими другими.

Название ПЗС — прибор с зарядовой связью — отражает способ считывания электрического потенциала методом сдвига заряда от фотодетектора к фотодетектору.

ПЗС-матрица состоит из поликремния, отделённого от силиконовой подложки, в которой при подаче напряжения через поликремневые затворы изменяются электрические потенциалы вблизи электродов. Положительное напряжение на электродах создаёт потенциальную яму, куда устремляются электроны из валентной зоны, сгенерированные фотонами. В этой потенциальной яме заряд хранится до момента считывания. Чем интенсивнее световой поток в течение экспозиции, тем больше скапливается электронов в потенциальной яме и тем выше итоговый заряд данного пикселя. Считывание итогового заряда ПЗС состоит в том, чтобы заставить поликремневые затворы, помимо функции электродов, выполнить ещё и роль сдвиговых регистров, таким образом, чтобы они образовали конвейерную цепочку вдоль одной оси. При этом если учесть, что обычно один пиксель формируется несколькими, например, четырьмя электродами, то попеременная подача на них высокого либо низкого напряжения по принципу n+1 (1-2, 2-3, 3-4 и т. д.) позволит накопленному заряду как бы перетекать по выбранной оси, не теряя своей величины. Это становится возможным благодаря тому, что, изменяя конфигурацию потенциального барьера, мы как бы сдвигаем потенциальную яму с накопленными в ней зарядами. Причём описанный цикл повторяется до тех пор, пока все содержимое выбранных осей не «перетечёт» к управляющей логике, преобразующей поступивший заряд в определённый уровень напряжения. Собственно, такой способ передачи заряда и дал название ПЗС — приборы с зарядовой связью фотосенсорам данного типа. Далее напряжение через усилитель и АЦП (аналого-цифровой преобразователь) подаётся уже в цифровом виде в оперативную память (буфер) и в процессор камеры, где интерполируется и преобразуется, а затем, в каком-либо стандартном формате изображения, например JPEG, поступает в устройство постоянного хранения, например Flash-карту SD.

История ПЗС — матрицы

Пример субпикселя ПЗС — матрицы с карманом n-типа

Архитектура пикселей у производителей разная.

Файл:Схема субпикселей ПЗС-матрицы с карманом n-типа.JPG
Схема субпикселей ПЗС-матрицы с карманом n-типа

Обозначения на схеме субпикселя ПЗС — матрицы с карманом n-типа
1 — Фотоны света, прошедшие через объектив фотоаппарата.
2 — Микролинза субпикселя (фотодиода).
3 — R — красный светофильтр субпикселя, фрагмент фильтра Байера.
4 — Прозрачный электрод — полисиликоновый (поликристаллический кремний) или сплав индия и оксида олова.
5 — Изолятор кварцевый (оксид кремния).
6 — Кремниевый канал n-типа. Зона генерации носителей (зона внутреннего фотоэффекта).
7 — Зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей
8 — Кремниевая подложка p-типа.

Микролинза субпикселя (фотодиода)

Файл:Lens.gif
Рисунок Микролинз

Буферные регистры сдвига «съедают» значительную часть площади матрицы, в результате каждому пикселю достаётся лишь 30% светочувствительной области от его общей поверхности, в то время как у пикселя полнокадровой матрицы эта область составляет 70%. Именно поэтому в большинстве современных ПЗС_матриц поверх каждого пиксела располагается микролинза. Такое простейшее оптическое устройство покрывает большую часть площади ПЗС-элемента и собирает всю падающую на эту часть долю фотонов в концентрированный световой поток, который, в свою очередь, направлен на довольно компактную светочувствительную область пиксела. Поскольку с помощью микролинз удаётся гораздо эффективнее регистрировать падающий на сенсор световой поток, со временем этими устройствами стали снабжать не только системы с буферизацией столбцов, но и полнокадровые матрицы. Впрочем, микролинзы тоже нельзя назвать «решением без недостатков».

Являясь оптическим устройством, микролинзы в той или иной мере искажают регистрируемое изображение чаще всего это выражается в потере чёткости у мельчайших деталей кадра— их края становятся слегка размытыми. С другой стороны, такое нерезкое изображение отнюдь не всегда нежелательно — в ряде случаев изображение, формируемое объективом, содержит линии, размер и частота размещения которых близки к габаритам ПЗС-элемента и межпиксельному расстоянию матрицы. В этом случае в кадре зачастую наблюдается ступенчатость (aliasing)— назначение пикселу определённого цвета, вне зависимости от того, закрыт ли он деталью изображения целиком или только его часть. В итоге линии объекта на снимке получаются рваными, с зубчатыми краями. Для решения этой проблемы в камерах с матрицами без микролинз используется дорогостоящий фильтр защиты от наложения спектров (anti -aliasing filter), а сенсор с микролинзами в таком фильтре не нуждается. Впрочем, в любом случае за это приходится расплачиваться некоторым снижением разрешающей способности сенсора.

ПЗС-матрицы делятся на

  • Полнокадровые матрицы
  • Матрицы с буферизацией кадра
  • Матрицы с буферизацией столбцов
    • Матрицы с прогрессивной развёрткой
    • Матрицы с чересстрочной развёрткой
  • Матрицы с обратной засветкой

Матрицы с обратной засветкой

Исторически сложилось так, что полнокадровые сенсоры применяются в основном в студийной технике, а матрицы с буферизацией столбцов— в любительской. В профессиональных камерах встречаются сенсоры обоих типов.

Файл:Back.gif
Рисунок матрицы с обратной засветкой

В классической схеме ПЗС-элемента, при которой используются электроды из поликристаллического кремния, чувствительность ограничена по причине частичного рассеивания света поверхностью электрода. Поэтому при съёмке в особых условиях, требующих повышенной чувствительности в синей и ультрафиолетовой областях спектра, применяются матрицы с обратной засветкой (back -illuminated matrix). В сенсорах такого типа регистрируемый свет падает на подложку, а чтобы обеспечить требуемый внутренний фотоэффект подложка шлифовалась до толщины 10–15 микрометров. Данная стадия обработки сильно удорожала стоимость матрицы, кроме того, устройства получались очень хрупкими и требовали повышенной осторожности при сборке и эксплуатации. Очевидно, что при использовании светофильтров, ослабляющих световой поток, все дорогостоящие операции по увеличению чувствительности теряют смысл, поэтому матрицы с обратной засветкой применяются по большей части в астрономической фотографии.

Чувствительность

Одной из важнейших характеристик регистрирующего устройства, будь то фотоплёнка или ПЗС-матрица, является чувствительность — способность определенным образом реагировать на оптическое излучение. Чем выше чувствительность, тем меньшее количество света требуется для реакции регистрирующего устройства. Для обозначения чувствительности применялись различные величины (DIN ,ASA), однако в конечном итоге прижилась практика обозначать этот параметр в единицах ISO (International Standards Organization— Международная организация стандартов).

Для отдельного ПЗС-элемента под реакцией на свет следует понимать генерацию заряда. Очевидно, что чувствительность ПЗС-матрицы складывается из чувствительности всех её пикселов и в целом зависит от двух параметров.

Первый параметр — интегральная чувствительность, представляющий собой отношение величины фототока (в миллиамперах) к световому потоку (в люменах) от источника излучения, спектральный состав которого соответствует вольфрамовой лампе накаливания. Этот параметр позволяет оценить чувствительность сенсора в целом.

Второй параметр — монохроматическая чувствительность, то есть отношение величины фототока (в миллиамперах) к величине световой энергии излучения (в миллиэлектронвольтах), соответствующей определённой длине волны. Набор всех значений монохроматической чувствительности для интересующей части спектра составляет спектральную чувствительность — зависимость чувствительности от длины волны света. Таким образом, спектральная чувствительность показывает возможности сенсора по регистрации оттенков определённого цвета.

Понятно, что единицы измерения как интегральной, так и монохромной чувствительности отличаются от популярных в фототехнике обозначений. Именно поэтому производители цифровой фототехники в характеристиках изделия указывают эквивалентную чувствительность ПЗС-матрицы в единицах ISO. А для того, чтобы определить эквивалентную чувствительность, производителю достаточно знать освещённость объекта съёмки, диафрагму и выдержку, и использовать пару формул. Согласно первой, экспозиционное число вычисляется как log 2(L *S /C), где L — освещённость, S — чувствительность, а C — экспонометрическая константа. Вторая формула определяет экспозиционное число равным 2*log 2K - log 2t ., где K — диафрагменное число, а t —выдержка. Нетрудно вывести формулу, позволяющую при известных L , C , K и t вычислить, чему равняется S .

Чувствительность матрицы является интегральной величиной, зависящей от чувствительности каждого ПЗС-элемента. Ну а чувствительность пиксела матрицы зависит, во-первых, от «подставленной под дождь фотонов» площади светочувствительной области (fill factor), а во-вторых, от квантовой эффективности (quantum efficiency), то есть отношения числа зарегистрированных электронов к числу упавших на поверхность сенсора фотонов.

В свою очередь, на квантовую эффективность влияет ряд других параметров. Во-первых, это коэффициент отражения — величина, отображающую долю тех фотонов, которые «отрикошетируют» от поверхности сенсора. При возрастании коэффициента отражения доля фотонов, участвующих во внутреннем фотоэффекте, уменьшается.

Не отражённые от поверхности сенсора фотоны поглотятся, образуя носители заряда, однако часть из них «застрянет» у поверхности, а часть проникнет слишком глубоко в материал ПЗС-элемента. Очевидно, что в обоих случаях они не примут никакого участия в процессе формирования фототока. «Проникающая способность» фотонов в полупроводник, именуемая коэффициентом поглощения, зависит как от материала полупроводника, так и от длины волны падающего света — «длинноволновые» частицы проникают гораздо глубже «коротковолновых». Разрабатывая ПЗС-элемент, необходимо для фотонов с длиной волны, соответствующей видимому излучению, добиться такого коэффициента поглощения, чтобы внутренний фотоэффект происходил вблизи потенциальной ямы, повышая тем самым шанс для электрона попасть в неё.

Нередко вместо квантовой эффективности используют термин «квантовый выход» (quantum yield), но в действительности данный параметр отображает количество носителей заряда, высвобождаемых при поглощении одного фотона. Разумеется, при внутреннем фотоэффекте основная масса носителей заряда всё же попадает в потенциальную яму ПЗС-элемента, однако определённая часть электронов (или дырок) избегает «ловушки». В числителе формулы, описывающей квантовую эффективность, оказывается именно то количество носителей заряда, которое попало в потенциальную яму.

Важной характеристикой ПЗС-матрицы является порог чувствительности — параметр регистрирующего свет устройства, характеризующий минимальную величину светового сигнала, который может быть зарегистрирован. Чем меньше этот сигнал, тем выше порог чувствительности. Главным фактором, ограничивающим порог чувствительности, является темновой ток (dark current). Он является следствием термоэлектронной эмиссии и возникает в ПЗС-элементе при подаче потенциала на электрод, под которым формируется потенциальная яма. «Темновым» же данный ток называется потому, что складывается из электронов, попавших в яму при полном отсутствии светового потока. Если световой поток слаб, то величина фототока близка, а порой и меньше, чем величина темнового тока.

Технология производства ПЗС-матриц обладает рядом особенностей. В частности, практически в каждом ПЗС-элементе уровни как темнового тока, так и теплового шума не такие, как в соседних пикселах. Поэтому степень искажения фототоков паразитными зарядами распределена по матрице хаотическим образом. Положение усугубляется практически всегда присутствующей несогласованностью в подаче перемещающих потенциалов на электроды переноса. Всё это ведёт к появлению у каждого отдельного сенсора присущего только ему шума фиксированного распределения (fixed pattern noise), выражающегося в виде раскиданных по всему кадру пикселов постороннего цвета, яркость которых напрямую связана с выдержкой — чем дольше длится экспонирование, тем резче выделяются на снимке точки с паразитными зарядами. Наиболее заметные пикселы называются «горячими» (hot pixels).

См. также

Ссылки

http://www.3dnews.ru/digital/photo-matrix/ http://www.3dnews.ru/digital/digitalphoto2/ http://www.3dnews.ru/documents/2127/imagesensor_big.jpg http://www.bnhof.de/~didactronic/CCD/CCDmatrix.htm http://www.ferra.ru/online/digiphoto/s27140/print/ http://nl.wikipedia.org/wiki/Digitale_fotografie http://www.bes-online.ru/show.php?id=204-1827 http://en.wikipedia.org/wiki/Charge-coupled_device http://www.lab2.kuis.kyoto-u.ac.jp/~iwama/ http://en.wikipedia.org/wiki/Charles_Stark_Draper_Prize Шаблон:Stub Шаблон:Tech-stub

bg:CCD ca:Detector CCD cs:CCD de:Charge-coupled Device el:Charge-coupled device en:Charge-coupled device es:CCD (sensor) et:CCD fa:دستگاه جفت‌کننده بار fi:CCD-kenno fr:Capteur photographique he:CCD hu:CCD id:CCD it:Charge Coupled Device ja:CCDイメージセンサ ko:CCD lv:Lādiņa saites matrica nl:Charge Coupled Device no:CCD pl:Matryca CCD pt:CCD sv:Charge Coupled Device tr:CCD ur:بار جفتی اختراع zh:電荷耦合元件